Виды Кровеносных Сосудов и Строение их Стенок

Виды Кровеносных Сосудов

Крупные сосуды – аорта, легочный ствол, полые и легочные вены – служат преимущественно путями перемещения крови. Все остальные артерии и вены, вплоть до мелких, могут, кроме того, регулировать приток крови к органам и ее отток, так как способны под влиянием нейрогуморальных факторов изменять свой просвет.

Различают артерии трех типов:

    1. эластического,
    2. мышечного и
    3. мышечно-эластического.

Стенка всех видов артерий, также как и вен, состоит из трех слоев (оболочек):

    1. внутреннего,
    2. среднего и
    3. наружного.

Относительная толщина этих слоев и характер тканей, их образующих, зависят от типа артерии.

Артерии эластического типа

Артерии эластического типа выходят непосредственно из желудочков сердца – это аорта, легочный ствол, легочная и общая сонная артерии. В их стенках находится большое количество эластических волокон, за счет чего они обладают свойствами растяжимости и упругости. Когда кровь под давлением (120–130 мм рт.ст.) и с большой скоростью (0,5– 1,3 м/с) выталкивается из желудочков при сокращении сердца, эластические волокна в стенках артерий растягиваются. После окончания сокращения желудочков, растянутые стенки артерий сокращаются и, таким образом, поддерживают давление в сосудистой системе в течение того времени, пока желудочек снова не наполнится кровью и не произойдет его сокращение.

Внутренняя оболочка (интима) артерий эластического типа составляет примерно 20% толщины их стенки. Она выстлана эндотелием, клетки которого лежат на базальной мембране. Под ним расположен слой рыхлой соединительной ткани, содержащей фибробласты, гладкие мышечные клетки и макрофаги, а также большое количество межклеточного вещества. Физико-химическое состояние последнего обусловливает проницаемость стенки сосуда и ее трофику. У пожилых людей в этом слое можно видеть отложения холестерина (атеросклеротические бляшки). Снаружи интима ограничена внутренней эластической мембраной.

В месте отхождения от сердца внутренняя оболочка образует карманообразные складки – клапаны. По ходу аорты также наблюдается складчатость интимы. Складки ориентированы продольно и имеют спиральный ход. Наличие складчатости характерно и для других видов сосудов. При этом увеличивается площадь внутренней поверхности сосуда. Толщина интимы не должна превышать определенной величины (для аорты – 0,15 мм), чтобы не препятствовать питанию среднего слоя артерий.

Средний слой оболочки артерий эластического типа образован большим количеством окончатых (фенестрированных) эластических мембран, расположенных концентрически. Их количество изменяется с возрастом. У новорожденного их около 40, у взрослого – до 70. Эти мембраны с возрастом утолщаются. Между соседними мембранами лежат мало дифференцированные гладкомышечные клетки, способные вырабатывать эластин и коллаген, а также аморфное межклеточное вещество. При атеросклерозе в среднем слое стенки таких артерий могут образовываться отложения хрящевой ткани в виде колец. Это наблюдается также при значительных нарушениях диеты.

Эластические мембраны в стенках артерий образуются за счет выделения аморфного эластина гладкомышечными клетками. В участках, лежащих между этими клетками, толщина эластических мембран значительно меньше. Здесь образуются фенестры (окна), через которые питательные вещества проходят к структурам сосудистой стенки. При росте сосуда эластические мембраны растягиваются, фенестры расширяются, на их краях происходит отложение вновь синтезированного эластина.

Наружная оболочка артерий эластического типа тонкая, образована рыхлой волокнистой соединительной тканью с большим количеством коллагеновых и эластических волокон, расположенных в основном продольно. Эта оболочка предохраняет сосуд от перерастяжения и разрывов. Здесь проходят нервные стволики и мелкие кровеносные сосуды (сосуды сосудов), питающие наружную оболочку и часть средней оболочки основного сосуда. Количество этих сосудов находится в прямой зависимости от толщины стенки основного сосуда.

Артерии мышечного типа

От аорты и легочного ствола отходят многочисленные ветви, которые доставляют кровь в различные участки организма: к конечностям, внутренним органам, покровам. Так как отдельные области тела несут разную функциональную нагрузку, они нуждаются в неодинаковом количестве крови. Артерии, осуществляющие их кровоснабжение, должны обладать способностью изменять свой просвет, чтобы доставлять необходимое в данный момент количество крови к органу. В стенках таких артерий хорошо развит слой гладких мышечных клеток, которые способны сокращаться и уменьшать просвет сосуда или расслабляться, увеличивая его. Эти артерии называются артериями мышечного типа, или распределительными. Их диаметр контролируется симпатической нервной системой. К таким артериям относятся позвоночная, плечевая, лучевая, подколенная, артерии мозга и другие. Их стенка также состоит из трех слоев. В состав внутреннего слоя входят эндотелий, выстилающий просвет артерии, субэндотелиальная рыхлая соединительная ткань и внутренняя эластическая мембрана. В соединительной ткани хорошо развиты коллагеновые и эластические волокна, расположенные продольно, и аморфное вещество. Клетки слабо дифференцированы. Слой соединительной ткани лучше развит в артериях крупного и среднего калибра и слабее – в мелких. Снаружи от рыхлой соединительной ткани расположена тесно с ней связанная внутренняя эластическая мембрана. Она более выражена в крупных артериях.

Средняя оболочка артерии мышечного типа образована спирально расположенными гладкомышечными клетками. Сокращение этих клеток приводит к уменьшению объема сосуда и проталкиванию крови в более дистальные отделы. Мышечные клетки соединены межклеточным веществом с большим количеством эластических волокон. Наружной границей средней оболочки является наружная эластическая мембрана. Эластические волокна, расположенные между мышечными клетками, связаны с внутренней и наружной мембранами. Они образуют своеобразный эластический каркас, придающий упругость стенке артерии и предотвращающий ее спадание. Гладкомышечные клетки средней оболочки при сокращении и расслаблении регулируют просвет сосуда, а следовательно приток крови в сосуды микроциркуляторного русла органа.

Наружная оболочка образована рыхлой соединительной тканью с большим количеством эластических и коллагеновых волокон, расположенных косо или продольно. В этом слое лежат нервы и кровеносные и лимфатические сосуды, питающие стенку артерий.

Артерии смешанного, или мышечно-эластического типа

Артерии смешанного, или мышечно-эластического типа по строению и функциональным особенностям занимают промежуточное положение между эластическими и мышечными артериями. К ним относятся, например, подключичная, наружная и внутренняя подвздошная, бедренная, брыжеечные артерии, чревный ствол. В среднем слое их стенки наряду с гладкомышечными клетками присутствует значительное количество эластических волокон и фенестрированных мембран. В глубокой части наружной оболочки таких артерий расположены пучки гладкомышечных клеток. Снаружи их покрывает соединительная ткань с хорошо развитыми пучками коллагеновых волокон, лежащих косо и продольно. Эти артерии обладают высокой эластичностью и могут сильно сокращаться.

По мере приближения к артериолам просвет артерий уменьшается, а их стенка истончается. Во внутренней оболочке уменьшается толщина соединительной ткани и внутренней эластической мембраны, в средней убывает число гладкомышечных клеток, исчезает наружная эластическая мембрана. Уменьшается толщина наружной оболочки.

Артериолы, капилляры и венулы, а также артериоло-венулярные анастомозы образуют микроциркуляторное русло. Функционально выделяют приносящие микрососуды (артериолы), обменные (капилляры) и отводящие (венулы). Было установлено, что системы микроциркуляции различных органов существенно отличаются друг от друга: их организация тесно связана с функциональными особенностями органов и тканей.

Артериолы

Артериолы представляют собой мелкие, до 100 мкм в диаметре, кровеносные сосуды, являющиеся продолжением артерий. Они постепенно переходят в капилляры. Стенку артериол образуют те же три слоя, что и стенку артерий, однако выражены они очень слабо. Внутренняя оболочка состоит из эндотелия, лежащего на базальной мембране, тонкой прослойки рыхлой соединительной ткани и тонкой внутренней эластической мембраны. Среднюю оболочку образуют 1–2 слоя гладкомышечных клеток, расположенных спирально. В терминальных прекапиллярных артериолах, гладкомышечные клетки лежат поодиночке, они обязательно присутствуют в местах разделения артериол на капилляры. Эти клетки кольцом окружают артериолу и выполняют функцию прекапиллярного сфинктера (от греч. sphinkter – обруч). Кроме того, для терминальных артериол характерно наличие отверстий в базальной мембране эндотелия. Благодаря этому возникает контакт эндотелиоцитов с гладкомышечными клетками, которые получают возможность реагировать на вещества, попавшие в кровь. Например, при выбросе в кровь адреналина из мозгового вещества надпочечников он достигает мышечных клеток в стенках артериол и вызывает их сокращение. Просвет артериол при этом резко уменьшается, кровоток в капиллярах приостанавливается.

Капилляры

Капилляры – это наиболее тонкие кровеносные сосуды, которые составляют самую протяженную часть кровеносной системы и соединяют артериальное и венозное русла. Образуются истинные капилляры в результате ветвления прекапиллярных артериол. Они располагаются обычно в виде сетей, петель (в коже, синовиальных сумках) или сосудистых клубочков (в почках). Величина просвета капилляров, форма их сетей и скорость кровотока в них определяются органными особенностями и функциональным состоянием сосудистой системы. Наиболее узкие капилляры находятся в скелетных мышцах (4–6 мкм), оболочках нервов, легких. Здесь они образуют плоские сети. В коже и слизистых оболочках просветы капилляров шире (до 11 мкм), они формируют трехмерную сеть. Таким образом, в мягких тканях диаметр капилляров больше, чем в плотных. В печени, железах внутренней секреции и кроветворных органах просветы капилляров очень широкие (20–30 мкм и более). Такие капилляры называются синусоидными или синусоидами.

Плотность капилляров неодинакова в различных органах. Наибольшее их количество на 1 мм3 обнаруживается в головном мозге и миокарде (до 2500–3000), в скелетной мышце – 300–1000, а в костной ткани еще меньше. В обычных физиологических условиях в тканях в активном состоянии находится примерно 50% капилляров. Просвет остальных капилляров значительно уменьшается, они становятся непроходимыми для клеток крови, но плазма продолжает по ним циркулировать.

Стенка капилляров образована эндотелиальными клетками, покрытыми снаружи базальной мембраной (рис. 2.9).

Строение и типы капилляров
Рис. 2.9. Строение и типы капилляров:
А – капилляр с непрерывным эндотелием; Б – капилляр с фенестрированным эндотелием; В – капиляр синусоидного типа; 1 – перицит; 2 – фенестры; 3 – базальная мембрана; 4 – эндотелиальные клетки; 5 – поры

В ее расщеплении лежат перициты – отросчатые клетки, окружающие капилляр. На этих клетках в некоторых капиллярах обнаруживаются эфферентные нервные окончания. Снаружи капилляр окружен мало дифференцированными адвентициальными клетками и соединительной тканью. Различают три основных типа капилляров: с непрерывным эндотелием (в мозге, мышцах, легких), с фенестрированным эндотелием (в почках, эндокринных органах, кишечных ворсинках) и с прерывистым эндотелием (синусоиды селезенки, печени, кроветворных органов). Капилляры с непрерывным эндотелием наиболее распространены. Клетки эндотелия в них соединены с помощью плотных межклеточных контактов. Транспорт веществ между кровью и тканевой жидкостью происходит через цитоплазму эндотелиоцитов. В капиллярах второго вида по ходу эндотелиальных клеток встречаются истонченные участки – фенестры, облегчающие транспорт веществ. В стенке капилляров третьего типа – синусоидов – промежутки между эндотелиальными клетками совпадают с отверстиями в базальной мембране. Через такую стенку легко проходят не только макромолекулы, растворенные в крови или тканевой жидкости, но и сами клетки крови.

Проницаемость капилляров определяет ряд факторов: состояние окружающих тканей, давление и химический состав крови и тканевой жидкости, действие гормонов и т.д.

Различают артериальный и венозный концы капилляра. Диаметр артериального конца капилляра равен примерно величине эритроцита, а венозного – несколько больше.

От терминальной артериолы могут отходить и более крупные сосуды – метартериолы (главные каналы). Они пересекают капиллярное русло и вливаются в венулу. В их стенке, особенно в начальной части, находятся гладкомышечные клетки. От их проксимального конца отходят многочисленные истинные капилляры и имеются прекапиллярные сфинктеры. В дистальный конец метартериолы могут вливаться истинные капилляры. Эти сосуды выполняют роль локальной регуляции кровотока. Они могут также служить каналами для усиления сброса крови из артериол в венулы. Этот процесс приобретает особое значение при терморегуляции (например в подкожной ткани).

Венулы

Различают три разновидности венул: посткапиллярные, собирательные и мышечные. Венозные части капилляров собираются в посткапиллярные венулы, диаметр которых достигает 8– 30 мкм. В месте перехода эндотелий образует складки, аналогичные клапанам вен, а в стенках увеличивается количество перицитов. Через стенку таких венул могут проходить плазма и форменные элементы крови. Эти венулы впадают в собирательные венулы диаметром 30–50 мкм. В их стенках появляются отдельные гладкомышечные клетки, часто не полностью окружающие просвет сосуда. Наружная оболочка четко выражена. Мышечные венулы, диаметром 50– 100 мкм, содержат 1–2 слоя гладкомышечных клеток в средней оболочке и выраженную наружную оболочку.

Число сосудов, отводящих кровь из капиллярного русла, обычно в два раза превышает количество приносящих сосудов. Между отдельными венулами образуются многочисленные анастомозы, по ходу венул можно наблюдать расширения, лакуны и синусоиды. Эти морфологические особенности венозного отдела создают предпосылки для депонирования и перераспределения крови в различных органах и тканях. Расчеты показывают, что находящаяся в кровеносной системе кровь распределяется таким образом, что в артериальной системе ее содержится до 15%, в капиллярах – 5– 12%, а в венозной системе – 70–80%.

Кровь из артериол в венулы может попадать и минуя капиллярное русло – через артериоло-венулярные анастомозы (шунты). Они присутствуют почти во всех органах, их диаметр колеблется от 30 до 500 мкм. В стенке анастомозов находятся гладкомышечные клетки, благодаря которым может изменяться их диаметр. Через типичные анастомозы артериальная кровь сбрасывается в венозное русло. Атипичными анастомозами являются описанные выше метартериолы, по которым течет смешанная кровь. Анастомозы богато иннервированы, ширина их просвета регулируется тонусом гладкомышечных клеток. Анастомозы контролируют кровоток через орган и кровяное давление, стимулируют венозный отток, участвуют в мобилизации депонированной крови и регулируют переход тканевой жидкости в венозное русло.

Вены

По мере того, как венулы сливаются в мелкие вены, перициты в их стенке полностью заменяются гладкомышечными клетками. Структура вен сильно варьирует в зависимости от диаметра и локализации. Количество мышечных клеток в стенках вен зависит от того, движется ли в них кровь к сердцу под действием силы тяжести (вены головы и шеи) или против нее (вены нижних конечностей). Вены среднего калибра имеют значительно более тонкие стенки, чем соответствующие артерии, но их составляют те же три слоя. Внутренняя оболочка состоит из эндотелия, внутренняя эластическая мембрана и субэндотелиальная соединительная ткань развиты слабо. Средняя, мышечная оболочка обычно развита слабо, а эластические волокна почти отсутствуют, поэтому разрезанная поперек вена, в отличие от артерии, всегда спадается. В стенках вен головного мозга и его оболочек мышечных клеток почти нет. Наружная оболочка вен самая толстая из всех трех. Она состоит преимущественно из соединительной ткани с большим количеством коллагеновых волокон. Во многих венах, особенно в нижней половине туловища, например в нижней полой вене, здесь находится большое количество гладкомышечных клеток, сокращение которых препятствует обратному току крови и проталкивает ее в сторону сердца. Так как кровь, текущая в венах, значительно обеднена кислородом и питательными веществами, в наружной оболочке имеется больше питающих сосудов, чем в одноименных артериях. Эти сосуды сосудов могут достигать внутренней оболочки вены из-за небольшого давления крови. В наружной оболочке развиты также лимфатические капилляры, по которым оттекает избыток тканевой жидкости.

По степени развития мышечной ткани в стенке вен они разделяются на вены волокнистого типа – в них мышечная оболочка не развита (вены твердой и мягкой мозговых оболочек, сетчатки глаза, костей, селезенки, плаценты, яремные и внутренняя грудная вены) и вены мышечного типа. В венах верхней части туловища, шеи и лица, верхней полой вене кровь продвигается пассивно вследствие своей тяжести. В их средней оболочке присутствует небольшое количество мышечных элементов. В венах пищеварительного тракта мышечная оболочка развита неравномерно. Благодаря этому вены могут расширяться и выполнять функцию депонирования крови. Среди вен крупного калибра, в которых слабо развиты мышечные элементы, наиболее типична верхняя полая вена. Движение крови к сердцу по этой вене происходит благодаря силе тяжести, а также присасывающему действию грудной полости во время вдоха. Фактором, стимулирующим венозный приток к сердцу, является также отрицательное давление в полости предсердий при их диастоле.

Особым образом устроены вены нижних конечностей. Стенка этих вен, особенно поверхностных, должна противостоять гидростатическому давлению, создаваемому столбом жидкости (крови). Глубокие вены поддерживают свою структуру благодаря давлению окружающих мышц, но поверхностные вены такого давления не испытывают. В этой связи стенка последних значительно толще, в ней хорошо развит мышечный слой средней оболочки, содержащий продольно и циркулярно расположенные гладкомышечные клетки и эластические волокна. Продвижение крови по венам может происходить также за счет сокращения стенок лежащих рядом артерий.

Характерной особенностью этих вен является наличие клапанов. Это полулунные складки внутренней оболочки (интимы), обычно расположенные попарно у слияния двух вен. Клапаны имеют форму карманов, открытых в сторону сердца, что исключает обратный ток крови под действием силы тяжести. На поперечном срезе клапана видно, что снаружи створки его покрыты эндотелием, а основу составляет тонкая пластинка соединительной ткани. В основании створок клапанов находится небольшое количество гладкомышечных клеток. Обычно проксимальнее места прикрепления клапана вена слегка расширяется. В венах нижней половины тела, где кровь продвигается против действия силы тяжести, мышечная оболочка развита лучше и клапаны встречаются чаще. Клапанов нет в полых венах (отсюда их название), в венах почти всех внутренностей, мозга, головы, шеи и в мелких венах.

Направление вен не такое прямое, как артерий – они характеризуются извилистым ходом. Еще одной особенностью венозной системы является то, что многие артерии мелкого и среднего калибра сопровождаются двумя венами. Часто вены разветвляются и вновь соединяются друг с другом, образуя многочисленные анастомозы. Во многих местах имеются хорошо развитые венозные сплетения: в малом тазе, в позвоночном канале, вокруг мочевого пузыря. Значение этих сплетений можно проследить на примере внутрипозвоночного сплетения. При наполнении кровью оно занимает те свободные пространства, которые образуются при смещении спинно-мозговой жидкости при изменении положения тела или при движениях. Таким образом, строение и расположение вен зависит от физиологических условий тока крови в них.

Кровь не только течет в венах, но и резервируется в отдельных участках русла. В кровообращении участвует примерно 70 мл крови на 1 кг массы тела и еще 20–30 мл на 1 кг находятся в венозных депо: в венах селезенки (примерно 200 мл крови), в венах воротной системы печени (около 500 мл), в венозных сплетениях желудочно-кишечного тракта и кожи. Если при напряженной работе необходимо увеличить объем циркулирующей крови, она выходит из депо и вступает в общую циркуляцию. Депо крови находятся под контролем нервной системы.

Иннервация кровеносных сосудов

Стенки кровеносных сосудов богато снабжены двигательными и чувствительными нервными волокнами. Афферентные окончания воспринимают информацию о давлении крови на стенки сосудов (барорецепторы) и содержании в крови таких веществ, как кислород, углекислый газ и других (хеморецепторы). Барорецепторные нервные окончания, наиболее многочисленные в дуге аорты и в стенках крупных вен и артерий, образованы терминалями волокон, проходящих в составе блуждающего нерва. Многочисленные барорецепторы сконцентрированы в каротидном синусе, расположенном вблизи бифуркации (раздвоения) общей сонной артерии. В стенке внутренней сонной артерии находится каротидное тельце. Его клетки чувствительны к изменению концентрации кислорода и углекислого в крови, а также ее рН. На клетках образуют афферентные нервные окончания волокна языкоглоточного, блуждающего и синусного нервов. По ним информация поступает в центры ствола мозга, регулирующие деятельность сердца и сосудов. Эфферентная иннервация осуществляется волокнами верхнего симпатического ганглия.

Кровеносные сосуды туловища и конечностей иннервируются волокнами вегетативной нервной системы, в основном симпатическими, проходящими в составе спинно-мозговых нервов. Подходя к сосудам, нервы ветвятся и образуют в поверхностных слоях стенки сосуда сплетение. Отходящие от него нервные волокна формируют второе, надмышечное или пограничное, сплетение на границе наружной и средней оболочек. От последнего волокна идут к средней оболочке стенки и образуют межмышечное сплетение, которое особенно выражено в стенке артерий. Отдельные нервные волокна проникают к внутреннему слою стенки. В состав сплетений входят как двигательные, так и чувствительные волокна.

Иисус Христос объявил: Я есмь Путь, и Истина, и Жизнь. Кто же Он на самом деле ?

Жив ли Христос? Воскрес ли Христос из мертвых? Исследователи изучают факты

РЕКЛАМА