Жив ли Христос?
Воскрес ли Христос из мертвых?
Исследователи изучают факты

Иисус Христос объявил:
Я есмь Путь, и Истина, и Жизнь.
Кто же Он на самом деле ?

Важные Материалы о Жизни и Смерти.

Соматосенсорная система

Соматосенсорная система

text_fields
text_fields
arrow_upward

Тело человека покрывает кожный покров. Кожа состоит из поверхностного эпителиального слоя и глубоких слоев (дермы), образованных плотной неоформленной соединительной тканью и подкожной жировой клетчаткой. Кроме того, имеются производные кожи – волосы, ногти, сальные и потовые железы. Подробно строение кожи описано в 5 главе.

Кроме покровной (защитной) кожа выполняет еще целый ряд функций. Она участвует в терморегуляции и выделении, а также несет большое количество рецепторных образований. Эти рецепторы воспринимают информацию о тактильных, болевых, температурных и других раздражениях, приложенных к различным участкам кожи. Другими словами, поверхность нашего тела (сомы) обладает чувствительностью, которая получила название соматической.

Для проведения этой импульсации существует несколько проводящих путей, по которым информация передается в различные отделы ЦНС, в том числе в кору больших полушарий. Для каждого вида чувствительности существуют свои проекции, соматотопическая организация которых позволяет определить, к какому участку нашего тела приложено раздражение, какова его сила и модальность (прикосновение, давление, вибрация, температурное или болевое воздействие и т.д.).

Прериферический отдел соматосенсорной системы

text_fields
text_fields
arrow_upward

Для восприятия этих раздражителей существует несколько видов рецепторных образований. Все они относятся к первичночувствующим, т.е. представляют собой концевые разветвления чувствительных нервных волокон. В зависимости от наличия или отсутствия вокруг них дополнительных структур в виде соединительнотканных и других капсул они могут быть соответственно инкапсулированными или неинкапсулированными (свободными).

Свободные нервные окончания

Эти окончания нервных волокон представляют собой их терминальные разветвления, лишенные миелиновой оболочки. Они располагаются в дерме и в глубоких слоях эпидермиса, поднимаясь до зернистого слоя (рис. 3.76).

Свободные нервные окончания А – в коже человека (по Догелю);Б – рецепторный аппарат волоса
Рис. 3.76.

Рис. 3.76. Свободные нервные окончания
А – в коже человека (по Догелю);
Б – рецепторный аппарат волоса:
1 – корень волоса;
2 – нервный стволик;
3 – нервные волокна;
4 – разветвление вокруг волосяного фолликула;
5 – нервные окончания

Такие окончания воспринимают механические стимулы, а также отвечают на нагревание, охлаждение и болевые (ноцицептивные) воздействия. Окончания образованы тонкими миелинизированными или безмиелиновыми волокнами. Так, например, при ожоге первые волокна обеспечивают быструю реакцию (отдергивание руки), а вторые – довольно продолжительное чувство жжения. Тонкие миелиновые волокна чувствительны к охлаждению, в то время как безмиелиновые – к нагреванию. В то же время, очень сильное охлаждение или нагревание может вызвать боль и последующий зуд.

Кроме того, в волосистой коже стержни и луковицы волос окружены окончаниями 5–10 чувствительных волокон (рис. 3.76). Эти волокна утрачивают миелиновую оболочку и внедряются в базальную пластинку волосяного стержня. Они реагируют на малейшее отклонение волоса.

Инкапсулированные нервные окончания

Инкапсулированные нервные окончания представляют собой специализированные образования для восприятия определенного вида стимула. Они являются окончаниями более толстых миелинизированных волокон, чем те, которые образуют свободные нервные окончания. Это связано с большей скоростью передачи сигнала в центральные структуры.

Инкапсулированные нервные окончания
Рис. 3.77. Инкапсулированные нервные окончания (по Догелю):
А – тельце Пачини; Б – диски Меркеля; В – тельце Мейснера; Г – тельца Руффини

Тельца Фатера-Пачини

Тельца Фатера-Пачини (тельца Пачини)одни из самых крупных рецепторных структур подобного рода (рис. 3.77, А). Они расположены в глубоких слоях дермы, а также в соединительнотканных оболочках мышц, надкостнице, брыжейках и т.д. На одном полюсе в тельце проникает миелинизированное нервное волокно, которое сразу же теряет миелиновую оболочку. Волокно проходит через тельце во внутренней колбе и на конце расширяется, образуя выросты неправильной формы. Над внутренней находится наружная колба, образованная многочисленными концентрически расположенными пластинами – производными шванновских клеток, между которыми находятся коллагеновые волокна и тканевая жидкость. Снаружи тельце покрыто соединительнотканной капсулой, которая непрерывно переходит в эндоневрий афферентного волокна. Чем глубже располагается тельце Пачини, тем большее количество слоев во внутренней и наружной колбах оно содержит. Эти окончания чувствительны к прикосновению, давлению и быстрой вибрации, что имеет значение для восприятия фактуры предмета. При нанесении раздражения, например в виде давления, слои капсулы смещаются, и в афферентном волокне возникает возбуждение.

Диски Меркеля

Диски Меркеля лежат более поверхностно под эпителием, возле его нижней границы (рис. 3.77, Б). Они чувствительны к статическим тактильным стимулам (прикосновение, давление).

Тельца Мейснера

Тельца Мейснера лежат в основании сосочков дермы и чувствительны к легким прикосновениям и вибрации (рис. 3.77, В). Они особенно многочисленны в коже ладоней и подошв, губ, век, сосках молочных желез. Тельца Мейснера представляют собой овальные образования длиной около 100 мкм, расположенные перпендикулярно поверхности эпителия. Тельце образуют уплощенные видоизмененные шванновские клетки, наслаивающиеся друг на друга, лежащие в большинстве своем поперечно. Миелинизированное афферентное волокно подходит к тельцу Мейснера, теряет миелин и многократно ветвится. Таким образом, в тельце входит до 9 его веточек. Они располагаются по спирали в пространствах между клетками. Снаружи тельце покрыто соединительнотканной капсулой, за его пределами переходящей в эндоневрий. С помощью пучков коллагеновых волокон капсула тельца прикрепляется к нижней границе эпителия.

Тельца Руффини

Тельца Руффини лежат в глубоких слоях дермы, они особенно многочисленны на подошвенной поверхности стопы и представляют собой овальные тельца размером 1×0,1 мм (рис. 3.77, Г). Толстое миелинизированное афферентное волокно подходит к тельцу, теряет оболочку и ветвится. Многочисленные терминальные волоконца переплетаются с коллагеновыми волокнами, которые также образуют сердцевину тельца. При смещении коллагеновых волокон происходит возбуждение афферентов. Тонкая капсула тельца переходит в эндоневрий.

Концевые колбы

Концевые колбы Краузе расположены в конъюнктиве глаза, языке, наружных половых органах. Тельца окружает тонкостенная капсула. Афферентное волокно перед вхождением в капсулу утрачивает миелин и ветвится. Вероятно, эти окончания выполняют механорецепторную функцию.

Кроме того, что нервная система получает информацию о раздражителях, действующих на кожный покров, в нее поступают импульсы от опорно-двигательного аппарата, сигнализирующие о положении тела в пространстве. Раньше эту систему чувствительности называли двигательным анализатором, но в настоящее время общепринятой стала другая терминология (табл. 3.3).

Виды сенсорных модальностей

Виды сенсорных модальностей, связанных с движением, и соответствующие им рецепторы
(по Шеперду)

Виды сенсорных модальностей
Как видно из таблицы, эти три термина в некоторой степени перекрывают друг друга. Проприорецепция объединяет сенсорные сигналы от скелета и мышц и, следовательно, включает в себя мышечное чувство. Кинестезия – это чувство положения тела и движения конечностей, а также ощущения усилий, силы и тяжести. В ее обеспечении участвуют все рецепторы опорно-двигательного аппарата и кожи.

Рецепторные структуры, обеспечивающие эти виды чувствительности, имеют достаточно сложное строение.

Мышечные рецепторы – мышечные веретена – служат для определения степени растяжения мышцы. Их особенно много в мышцах, управляющих точными движениями. Эти рецепторы представляют собой образования веретеновидной формы, заключенные в тонкую растяжимую соединительнотканную капсулу. Веретена располагаются в мышцах продольно и растягиваются при растяжении мышцы. Каждое веретено образовано несколькими волокнами (от 2 до 12), названными интрафузальными (от лат. fusus – веретено) (рис. 3.78). Эти волокна омывает тканевая жидкость. Интрафузальные волокна бывают двух типов. В центральной части большинства волокон располагается цепочка из одного ряда клеточных ядер. Второй тип волокон в центре несет ядерное скопление (волокна с ядерной сумкой); эти волокна длиннее и толще, чем первые. Периферические концы волокон обоих типов способны растягиваться.

Мышечные веретена
Рис. 3.78. Мышечные веретена: А – мышечные веретена в глазных мышцах: 1 – нервное волокно; 2 – мышечное волокно; 3 – сухожилие; Б и Г – волокна с ядерной сумкой; В и Д – волокна с цепочкой ядер в центре; [А, Б, В – гистологические препараты; Г, Д – схемы]; 1 – капсула; 2 – Интрафузальные волокна; 3 – экстрафузальные волокна; 4 – первичные окончания; 5 – вторичные окончания; 6 – кустовидные эфферентные окончания; 7 – первичный афферент; 8 – вторичный афферент; 9 – эфферентные нервные волокна
Интрафузальные волокна иннервируются афферентными миелинизированными нервными волокнами. При этом толстое нервное волокно, имеющее большую скорость проведения импульсов, подходит к центральной части интрафузального волокна и по спирали обвивает ядерную сумку или область, содержащую цепочку ядер. Такое окончание называют первичным. По сторонам от первичных окончаний более тонкие афферентные волокна образуют вторичные окончания, форма которых может быть похожа на гроздь. Первичное окончание реагирует на степень и скорость растяжения мышцы, а вторичное – только на степень растяжения и изменение положения мышцы.

При растяжении мышцы информация от нервных окончаний поступает в спинной мозг, где часть ее переключается на мотонейроны передних рогов. Их ответная рефлекторная импульсация приводит к сокращению мышцы. Другая часть импульсов переключается на вставочные нейроны и поступает в другие отделы нервной системы (см. ниже).

Мышечные веретена имеют также и эфферентную иннервацию, которая контролирует степень их растяжения. Эфферентные волокна подходят к мышечным веретенам от мотонейронов спинного мозга, но не от тех, что иннервируют саму мышцу, волокна которой называют экстрафузальными. Однако в некоторых случаях мышечные веретена получают моторную иннервацию по коллатералям от аксонов, идущим к мышцам. Это наблюдается, например, в мышцах глазного яблока.

Кроме рецепторных окончаний, лежащих в самих мышцах и реагирующих на степень их растяжения, существуют рецепторы в местах соединения мышц с сухожилиями. Они носят название сухожильных органов (рецепторов) Гольджи (рис. 3.79).

Рецепторные окончания в сухожилиях (по Догелю)
Рис. 3.79.

Рис. 3.79. Рецепторные окончания в сухожилиях (по Догелю):

1 – миелиновое нервное волокно;
2 – мышечные волокна;
3 – концевое разветвление;
4 – пучок коллагеновых волокон;
5 – осевой цилиндр;
6 – ядро сухожильной клетки фиброцита;
7 –тельца Руффини;
8 – тельца Пачини;
9 – рецепторы Гольджи;
10 – свободные нервные окончания

Они покрыты капсулой и иннервируются толстыми миелиновыми волокнами. Оболочка волокон теряется в месте прохождения через капсулу, и волокно образует терминальные ветвления между пучками коллагеновых волокон сухожилия. Эти окончания возбуждаются при сдавливании их волокнами сухожилия при сокращении мышцы, тогда как мышечные веретена неактивны, и наоборот, при растяжении мышцы активность веретен возрастает, а сухожильных рецепторов снижается.

Большое количество рецепторных окончаний расположено в суставах (рис. 3.79). В суставных связках лежат рецепторы, схожие с сухожильными, в соединительнотканных суставных сумках в большом количестве встречаются свободные нервные окончания, а также структуры, аналогичные тельцам Пачини и Руфини. Они чувствительны к растяжению и сжатию, возникающим при движении, и таким образом сигнализируют о положении тела в пространстве и движении отдельных его частей (кинестезия). Свободные нервные окончания могут, кроме того, воспринимать боль.

Проводниковый и центральный отделы соматосенсорной системы

text_fields
text_fields
arrow_upward

Нервные импульсы от рецепторов кожи и опорно-двигательного аппарата, кроме головы, по спинно-мозговым нервам достигают спинальных ганглиев, а затем через задние корешки поступают в спинной мозг. Афферентные волокна каждого заднего корешка проводят импульсы от определенной области тела – дерматома (см. Атл.). Поступившая в спинной мозг информация используется в двух назначениях: она участвует в местных рефлексах, дуги которых замыкаются на уровне спинного мозга, а также передается в вышележащие отделы ЦНС по восходящим путям. При этом в восходящих трактах прослеживается соматотопическая организация: аксоны, присоединившиеся на более высоком уровне, располагаются со стороны серого вещества. Соответственно аксоны, идущие от нижней части тела, лежат более поверхностно.

Как говорилось выше, серое вещество спинного мозга можно представить в виде пластин. Тонкие безмиелиновые волокна, подходящие к спинному мозгу от болевых и механорецепторов, оканчиваются в поверхностных пластинах, в основном в желатинозной субстанции. Тонкие миелиновые волокна доходят в основном только до краевой зоны (рис. 3.80).

Соматосенсорные пути в спинном мозгу
Рис. 3.80.

Рис. 3.80. Соматосенсорные пути в спинном мозгу (по Melzack, 1965):

1 и 2 – миелинизированные и 2 – безмиелиновые волокна от механорецепторов (1 и 2) и болевых рецепторов (2);
3 – вставочный нейрон;
4 – проекционный нейрон;
5 – к переднему рогу (сгибательный рефлекс);
6 – к спиноталамическим трактам;
I–V – пластины серого вещества

Толстые миелиновые волокна огибают задний рог, отдают коллатерали к нейронам III–IV слоев и входят в задний канатик белого вещества. Как было установлено, большинство нейронов заднего рога получают афферентацию только одного типа, однако существуют нейроны, на которых сходятся импульсы от различных рецепторов. На этом может быть основано взаимодействие различных рецепторных систем. Аксоны нейронов заднего рога могут уходить в белое вещество – в восходящие тракты, или достигать мотонейронов передних рогов и участвовать в осуществлении ряда спинальных рефлексов. Так, импульсы от кожных рецепторов запускают сгибательный рефлекс. Он появляется при отдергивании конечности от болевого раздражителя (при ожоге и т.п.).

Импульсы от рецепторов соматосенсорной системы проводятся по тонкому и клиновидному пучкам, а также по спинно-таламическим и спинно-мозжечковым путям и тройничной петле.

Тонкий пучок несет импульсы от тела ниже V грудного сегмента, а клиновидный пучокот верхней части туловища и рук. Эти пути образованы аксонами чувствительных нейронов, тела которых лежат в спинальных ганглиях, а дендриты образуют рецепторные окончания в коже, мышцах и сухожилиях. Пройдя весь спинной мозг и заднюю часть продолговатого, волокна тонкого и клиновидного пучков оканчиваются на нейронах тонкого и клиновидного ядер.

Аксоны нейронов этих ядер идут по двум направлениям. Одни – под названием наружных дугообразных волоконпереходят на противоположную сторону, где в составе нижних ножек мозжечка оканчиваются на клетках коры червя (см. Атл.). Нейриты последних связывают кору червя с ядрами мозжечка. Аксоны нейронов этих ядер, в составе нижних ножек мозжечка, направляются к преддверным ядрам моста.

Другая, большая часть волокон от нейронов тонкого и клиновидного ядер спереди от центрального канала продолговатого мозга, совершает перекрест и образует медиальную петлю или лемниск. Поэтому оба этих пути называют лемнисковой системой.

Медиальная петля идет через продолговатый мозг, покрышки моста и среднего мозга и заканчивается в латеральных и вентральных ядрах таламуса. По пути через ствол мозга волокна медиальной петли отдают коллатерали к ретикулярной формации. Волокна нейронов таламуса проходят в составе таламической лучистости к коре центральных областей больших полушарий. Как ядра продолговатого мозга, так и таламические и корковые проекции тонкого и клиновидного путей имеют соматотопическую организацию. По этим путям (особенно по клиновидному пучку) передается тонкая чувствительность от верхних конечностей, благодаря чему становятся возможными тонкие и точные движения пальцев руки. Этому способствует также наличие небольшого числа переключений с нейрона на нейрон – не происходит «растекания» возбуждения по структурам головного и спинного мозга.

Спинно-таламический путь проводит возбуждение от рецепторов, раздражение которых вызывает болевые и температурные ощущения (см. Атл.). Здесь также имеются волокна от суставных и тактильных рецепторов. Тела чувствительных нейронов этого пути также залегают в спинальных ганглиях. Центральные отростки этих нейронов входят в спинной мозг в составе задних корешков, где и оканчиваются на телах вставочных нейронов задних рогов на уровне IV– VI пластин. Аксоны нейронов задних рогов частично переходят на противоположную сторону, остальные остаются на своей стороне и в глубине бокового канатика образуют спинно-таламический путь. Последний проходит спинной мозг, покрышки продолговатого мозга, моста и ножек мозга и оканчивается на клетках вентрального ядра таламуса. По пути через ствол мозга от волокон этого тракта отходят коллатерали к ретикулярной формации. От таламуса волокна идут в составе таламической лучистости к коре, где оканчиваются, главным образом в постцентралъной области.

Спинно-мозжечковые задний и передний пути проводят возбуждение от проприорецепторов двигательного аппарата (см. Атл.). Чувствительные нейроны этих путей расположены в спинальных ганглиях, а вставочные – в задних рогах спинного мозга. Нейриты вставочных нейронов, входящие в состав заднего спинно-мозжечкового пути, остаются на той же стороне спинного мозга в боковом канатике, а образующие передний путь переходят на противоположную сторону, где располагаются тоже в боковом канатике. Оба пути входят в мозжечок: задний – по его нижним ножкам, а передний – по верхним. Оканчиваются они на клетках коры червя. Отсюда импульсы идут по тем же путям, что и проходящие по наружным дугообразным волокнам из продолговатого мозга. Благодаря спинно-мозжечковым путям осуществляется интеграция информации от мышечных и суставных рецепторов конечностей и мозжечковых механизмов, необходимых для координации движений, поддержания мышечного тонуса и позы. Это особенно важно для работы нижних конечностей в положении стоя и при движении

Тройничная петля передает импульсы от механо-, термо- и болевых рецепторов головы (см. Атл.) Чувствительными нейронами служат клетки тройничного узла. Периферические волокна этих клеток проходят в составе трех ветвей тройничного нерва, иннервирующих кожу лица (рис. 3.28). Центральные волокна чувствительных нейронов выходят из узла в составе чувствительного корешка тройничного нерва и проникают в мост в том месте, где он переходит в средние ножки мозжечка. В мосту эти волокна делятся Т-образно на восходящие и длинные нисходящие ветви (спинальный путь), которые оканчиваются на нейронах, образующих в покрышке моста основное сенсорное ядро тройничного нерва, а в продолговатом и спинном мозге – его спинальное ядро (см Атл.). Центральные волокна нейронов этих ядер совершают перекрест в верхней части моста и в качестве тройничной петли проходят по покрышке среднего мозга до таламуса, где оканчиваются самостоятельно или вместе с волокнами медиальной петли над клетками его вентрального ядра. Отростки нейронов этого ядра направляются в составе таламической лучистости к коре нижней части постцентралъной области, где главным образом и локализуется чувствительность, приходящая от структур головы.

Соматосенсорные проекции в коре больших полушарий расположены в постцентральной извилине. Сюда подходят волокна от таламуса, приносящие импульсы от всех рецепторов кожи и опорно-двигательного аппарата. Здесь, также как и в таламусе, хорошо выражена соматотопическая организация проекций (рис. 3.81).

Соматосенсорная кора
Рис. 3.81.

Рис. 3.81. Соматосенсорная кора:
1 – нога,
2 – бедро,
3 – туловище;
4–5 – голова;
6 – рука;
7 – локоть,
8 – предплечье;
9 – кисть;
10 – пальцы;
11 – большой палец;
12 – глаз;
13 – нос;
14 – лицо;
15 – губы;
16 – зубы;
17 – десны;
18 – челюсть;
19 – язык,
20 – глотка,
21 – внутренние органы

Кроме первичной проекционной зоны, получающей афферентацию только от таламуса, существует и вторичная зона, на нейронах которой наряду с таламическими оканчиваются волокна от первичной зоны. В этой зоне происходит переработка сенсорных сигналов, отсюда они направляются в другие, в том числе и моторные области коры и подкорковые структуры.

Иисус Христос объявил: Я есмь Путь, и Истина, и Жизнь. Кто же Он на самом деле ?

Жив ли Христос? Воскрес ли Христос из мертвых? Исследователи изучают факты